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EVENTBUILDER APPLICATION

• Application responding to state machine that 
converts collections of artdaq::Fragments to 
art::Events
• Input: artdaq fragment(s) from BoardReaders
• Output: art::Events to DataLoggers

• There are no directly user/experiment-written 
components
• Basically all artdaq internal à any changes imply new 

version of artdaq
• There are “plugins” for what to do with data

• TransferPlugins for data transport
• art modules for data processing and filtering
• Message/metric plugins for what to do with 

monitoring/logging data
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DIAGRAM OF THE EVENTBUILDER
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EVENTBUILDERCORE

• Inherits from DataReceiverCore
• Same logic for EventBuilder as DataLogger and 

Dispatcher
• DataReceiverCore holds a DataReceiverManager

(DRM) and (shared ptr to) 
SharedMemoryEventManager (SMEM)
• SMEM inherits from SharedMemoryManager, and 

owns/manages the shared memory buffer
• DRM runs threads for each TransferInput source
• SMEM launches and monitors art process, which in 

turn decide their output module location
• Multiple art threads allows distributed data processing and 

filtering without needing more EventBuilder applications
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DATARECEIVERMANAGER THREADS
(IN BRIEF)

1. Wait (with timeout) for fragment header
• Don’t exit on timeout … just try again

2. Check fragment type to handle data vs. control
3. If data, request buffer location from SMEM based 

on sequence ID, retrying for valid location except 
in non-reliable mode

4. Collect fragment data into provided location
5. Inform SMEM fragment is completed with writing
6. Increment fragment counting stats
7. Report receiving stats to metric manager

10 Jan 2018 5



DRM ENDOFDATA

• When DRM gets “EndOfData” fragment, it extracts 
“EndOfData” count to know sequence IDs it expects
• DRM receiving threads will wait for remaining data

• Subject to timeouts
• One could force stop of all sources by sending EndOfData

fragment with no more expected fragments
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SHAREDMEMORYEVENTMANAGER

• Total buffer size determined at initialization, based on 
max events in buffer, max event size or max fragment 
size * number of expected fragments per event

• “startRun” called just before start of DRM (at start 
transition of course) à start of art threads

• Each art thread must be configured in same way, with 
RawInput_source source module
• Avoid potential art processing history bug
• More on RawInput_source later…

• Each SM event buffer holds flag of state, reader/writer 
position, and ”last touched time”
• SMEM additionally labels buffers being written as inactive, 

active, or pending
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MULTITHREADED ACCESS OF
SHAREDMEMORY

• Writing and reading of shared memory is multi-
threaded
• Multiple sources can write into memory simultaneously
• Multiple art threads can read data from memory 

simultaneously
• Mutexes managed per buffer
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SHAREDMEMORY BUFFER FLOW

• Buffers setup on initialization 
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SHAREDMEMORY BUFFER FLOW

• All start as empty

EMPTY
EMPTY

…
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SHAREDMEMORY BUFFER FLOW

• First fragment arrives
• Buffer space allocated for that event
• State is “active” since data is there

E1
F1E1WRITING (Active)

EMPTY
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SHAREDMEMORY BUFFER FLOW

• Fragment from next event arrives
• All sequence IDs not previously allocated are assigned
• Buffer without data is “Inactive”
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WRITING (Inactive)
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SHAREDMEMORY BUFFER FLOW

• Remaining fragments from first event arrive
• Once expected number of fragments detected, buffer 

marked “Pending”
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SHAREDMEMORY BUFFER FLOW

• Fragment state shifts to FULL, as it’s the lowest 
sequence ID in buffer
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SHAREDMEMORY BUFFER FLOW

• While fragments arrive, FULL buffer can be read by 
an art thread
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SHAREDMEMORY BUFFER FLOW

• Fragments can continue to arrive while we are 
reading/processing first event

E1
F1

E1
F2

E1
F3

E1
F4

E1
F5

E1
F6

E1
F7

E1
F8

E1
F9

E1
FA

E1
FBE1

E2

E3
F1

E3
F2

E3
F3

E3
F4

E3
F5

E3
F6

E3
F7

E3
F8

E3
F9E3

E4

E5
F1E5

READING

WRITING (Inactive)

WRITING (Inactive)
WRITING (Active)

WRITING (Active)

10 Jan 2018 17



SHAREDMEMORY BUFFER FLOW

• Remaining fragments for the “next” event, pushing 
its state to Pending
• Does not immediately move to FULL, as Event 2 is still in 

buffer 
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SHAREDMEMORY BUFFER FLOW

• art thread can finish with event and buffer gets 
marked done …
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SHAREDMEMORY BUFFER FLOW

• … and is then marked as EMPTY
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SHAREDMEMORY BUFFER FLOW

• Buffers in WRITING state can eventually timeout...
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SHAREDMEMORY BUFFER FLOW

• …and then revert back to EMPTY...
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SHAREDMEMORY BUFFER FLOW

• ...which allows the pending buffer to be marked 
FULL
• And then is readable by an art thread
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SHAREDMEMORY BUFFER FLOW

• If a fragment doesn’t arrive for a particular event, 
can also see backlog due to that missing fragment
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SHAREDMEMORY BUFFER FLOW

• On timeout, active buffers are pushed forward to 
pending...
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SHAREDMEMORY BUFFER FLOW

• ...which allows them to be marked as FULL ...
• Note: pending and FULL buffers will not accept new 

fragments, so incoming missing fragment would be 
ignored
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SHAREDMEMORY BUFFER FLOW

• ...which will then eventually clear the backlog
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SHAREDMEMORY BUFFER FLOW

• When enough events come in (and we haven’t read 
events fast enough) the buffer can start to fill...
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SHAREDMEMORY BUFFER FLOW

• ...and so if the next event (here event 11) comes in, 
we overwrite the lowest inactive buffer
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SHAREDMEMORY BUFFER FLOW

• ...and fill with the new event
• Option, by default, is to allow for overwriting FULL buffers 

(but not READING buffers) if there are no Inactive buffers 
left
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DIAGRAM OF THE ART SIDE
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WHAT HAPPENS IN ART, GENERALLY

• Data comes in via “input source”
• Normal offline art jobs: this is a ROOT file with art::Events
• “EmptyEvent” used for simulation generation
• Dedicated input source for reading in from shared 

memory: SharedMemoryReader source
• Takes in raw data and creates art::Event

• Producer/Filter modules run in “trigger path” over 
art::Events
• Multiple trigger paths allowed without running modules twice

• Events passing trigger paths sent to output 
modules
• All trigger paths must finish first
• Multiple output modules allowed
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SHAREDMEMORYREADER SOURCE

• Produces collections of artdaq::Fragments in 
art::Event
• Artdaq::Fragments have instance labels of fragment type 

or “ContainerXXX” type
• readNext routine checks for data indefinitely

• There is a timeout, but by default resume back in loop 
automatically after a timeout

• Returns and quits art thread if
• No resume after timeout (and we timeout)
• Get an event with no fragments
• First fragment type is EndOfData

• Handles art needs with EndOfRun and 
EndOfSubrun fragments too
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ROOTMPIOUTPUT MODULE

• Output module used for handling sending art::Events 
between artdaq processes
• EventBuilderàDataLogger, DataLoggeràDispatcher

• Two main parts
• Handling and packaging of the art::Event into a binary blob 

inside an artdaq::Fragment
• The data transport, done via the NetMonTransportService

• NetMonTransportService is global scope element in art 
to handle data transport (incoming and outgoing)
• Contains DataSenderManager for outgoing, with 

TransferInterface plugins (only TPC and SHMEM work right 
now)

• Contains SharedMemoryReader piece for incoming
• All ROOTMPIOutput modules in an art job will share the 

NetMonTransportService
• Note: DataSenderManager is same as in BRs, meaning it 

can use a RoutingMaster as well
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DIAGRAM OF THE DATALOGGER
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DATALOGGERCORE

• Same logic for EventBuilder as DataLogger
• DataReceiverCore holds a DataReceiverManager and 

SharedMemoryEventManager (and buffer)
• DRM runs threads for each TransferInput source
• SMEM launches and monitors art process, which in turn 

decide their output module location
• SMEM handling/flow works in same way as 

EventBuilder
• Simplified that there is now only 1 fragment per event, 

containing the fully built event
• Input source for art threads reads from shared memory 

and simply copies/unpacks the fragment data payload 
into new art::Event
• Specifying all the necessary art internals when it does
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ROOTOUTPUT MODULE

• art already provides an output module to write a 
ROOT file: RootOutputModule
• Options for …

• ROOT compression level
• When to create new files (per n events, per subrun, max 

file size, etc.)
• Objects to drop (not write to file)
• Trigger paths from which to include events (default is all 

events at end of all paths)
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